M.Sc. Data Science Part – II Syllabus Credit Based System and Grading System Academic Year 2024-25

Course Code	Course Type	Course Title	Credits
SIPDSCC611	Core Subject (Major)	Machine Learning	4
SIPDSCC612	Core Subject (Major)	Big Data Analytics	4
SIPDSEL611	Core Subject (DSC)	Database Administration and Security	3
SIPDSCCP611	Core Subject Practical (Major)	Machine Learning – Practical	2
SIPDSCCP612	Core Subject Practical (Major)	Big Data Analytics – Practical	2
SIPDSELP611	Core Subject Practical (DSC)	Database Administration and Security – Practical	1
SIPDSRP611	Research Project	Project	6
		Total Credits	22

<u>M.Sc. Part – II Semester – III</u>

SIPDSCC611 : Machine Learning

M.Sc. (Data Science)	Semester – III		
Course Name: Machine Learning	Course Code: SIPDSCC611		
Credits	4		

Course Objective:

- To introduce students to the fundamental concepts and principles of Machine Learning.
- To familiarize students with various types of machine learning algorithms and their applications. To provide hands-on experience in implementing and evaluating machine learning models.
- To develop critical thinking and problem-solving skills in the context of machine learning.
- To enable students to apply machine learning techniques to real-world problems and datasets.
- To understand the limitations and challenges of machine learning and develop strategies to address them.

Course Outcomes:

- **CO1:** Understand the foundational concepts and principles of Machine Learning.
- **CO2:** Apply supervised and unsupervised learning techniques, including classification algorithms and clustering algorithms.
- **CO3:** Evaluate the performance of Machine Learning models using classification metrics, ROC/AUC curve analysis, and cross-validation techniques.
- **CO4:** Implement regression models (such as linear regression and logistic regression) and understand their applications in predictive analysis.
- **CO5:** Utilize dimensionality reduction techniques (Like PCA) for feature reduction and selection, and apply association rule mining algorithms (such as the Apriori algorithm) for discovering meaningful patterns in datasets.

Unit	Contents	No. of	
		Lectures	
Ι	Introduction to Machine Learning: Machine Learning(ML), Need for	15	
	Machine Learning, ML from Knowledge-driven to Data Driven,		
	Applications of Machine Learning, Problems suitable for Machine Learning,		
	Advantages, Disadvantages and Challenges of Machine Learning,		
	Challenges of ML. General architecture of ML systems, Underlying		
	Concepts in Machine Learning: Inductive Learning, Generlization, Bias		
	and Variance, Overfitting and Underfitting, Parametic and Non Parametric		
	algorithms. Types of Machine Learning: Supervised and Unsupervised		
	Learning, Workflow, Semisupervised Learning, Reinforced Learning		
II	Classification and Regression: Classification: Binary Classification-	15	
	Assessing Classification performance, Class probability Estimation		
	Assessing class probability Estimates, Multiclass Classification.		
	Regression: Assessing performance of Regression- Error measures,		

	Overfitting- Catalysts for Overfitting, Case study of Polynomial Regression.		
	Theory of Generalization: Effective number of hypothesis, Bounding the		
	Growth function, VC Dimensions, Regularization theory.		
III	Linear Models: Least Squares method, Multivariate Linear Regression,	15	
	Regularized Regression, Using Least Square regression for Classification.		
	Perceptron, Support Vector Machines, Soft Margin SVM, Obtaining		
	probabilities from Linear classifiers, Kernel methods for non-Linearity.		
	Logic Based and Algebraic Model: Distance Based Models: Neighbours		
	and Examples, Nearest Neighbours Classification, Distance based		
	clustering-K means Algorithm, Hierarchical clustering		
IV	Rule Based Models: Rule learning for subgroup discovery, Association rule	15	
	mining. Tree Based Models: Decision Trees, Ranking and Probability		
	estimation Trees, Regression trees, Clustering Trees. Probabilistic Model:		
	Normal Distribution and Its Geometric Interpretations, Naïve Bayes		
	Classifier, Discriminative learning with Maximum likelihood, Probabilistic		
	Models with Hidden variables: Estimation-Maximization Methods,		
	Gaussian Mixtures, and Compression based Models.		

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Machine Learning: Concepts, Techniques and Applications	T V Geetha S, Sendhilkumar	CRC Press, Taylor and Francis	First Edition	2023
2	Machine Learning: The Art and Science of Algorithms that Make Sense of Data	Peter Flach	Cambridge University Press	First Edition	2012
3	Introduction to Statistical Machine Learning with Applications in R	Hastie, Tibshirani, Friedman	Springer	Second Edition	2012
4	Introduction to Machine Learning	Ethem Alpaydin	PHI	Second Edition	2012

SIPDSCCP611 : Machine Learning Practical

M.Sc. (Data Science)	Semester – III	
Course Name: Machine Learning Practical	Course Code: SIPDSCCP611	
Credits	2	

List of Practical: (Make use of python)

Implementing a K-Nearest Neighbor (KNN) algorithm (e.g. to classify handwritten digits).
Building a decision tree model using the ID3 algorithm (e.g. to predict whether a customer will churn or not).
Developing a Support Vector Machine (SVM) model (e.g. to classify email messages as spam or
not spam)
Building a Naïve Bayes classifier (e.g. to classify movie reviews as positive or negative
sentiment).
Implementing linear regression (e.g. to predict housing prices based on features such as size and
location).
Using logistic regression (e.g. to predict whether a credit card transaction is fraudulent or not).
Evaluating a classification model using metrics such as accuracy, precision, recall, and F1 score.
Applying hierarchical clustering (e.g. to group customer segments based on their purchasing
behavior).
Implementing the K-means clustering algorithm (e.g. to identify distinct clusters in a customer
demographic dataset).
Utilizing Principal Component Analysis (PCA) for dimensionality reduction to improve the
efficiency and interpretability of a model.

SIPDSCC612 : Big Data Analytics

M.Sc. (Data Science)	Semester – III	
Course Name: Big Data Analytics	Course Code: SIPDSCC612	
Credits	4	

Course Objective:

- Understand the Big Data Platform and its Use cases.
- Provide an overview of Apache Hadoop.
- Provide HDFS Concepts and Interfacing with HDFS.
- Understand Map Reduce Jobs Provide hands on Hadoop Eco System.
- Apply analytics on Structured, Unstructured Data.

Course Outcomes:

- CO1: Identify Big Data and its Business Implications.
- **CO2:** List the components of Hadoop and Hadoop Eco-System.
- **CO3:** Access and Process Data on Distributed File System.
- CO4: Manage Job Execution in Hadoop Environment.
- **CO5:** Develop Big Data Solutions using Hadoop Eco System.
- **CO6:** Analyze Infosphere BigInsights Big Data Recommendations.

Unit	Contents		
		Lectures	
Ι	Introduction: Introduction to Big Data, Big Data Characteristics, Types of	15	
	Big Data, Traditional Versus Big Data Approach, Technologies Available		
	for Big Data, Infrastructure for Big Data, Use of Data Analytics, Big Data		
	Challenges, Desired Properties of a Big Data System, Case Study of Big		
	Data Solutions.		
	Analytical Theory and Methods: Clustering and Associated Algorithms,		
	Association Rules, Apriori Algorithm, Candidate Rules, Applications of		
	Association Rules, Validation and Testing, Diagnostics, Regression,		
	Linear Regression, Logistic Regression, Additional Regression Models.		
II	Hadoop: Introduction, What is Hadoop?, Core Hadoop Components,	15	
	Operating System for Big Data, Concepts, Hadoop Architecture, Hadoop		
	Ecosystem, Hive, Hadoop Limitations, Recommendation Systems.		
III	Interactive Data Analysis with Spark Shell: REPL Commands, Using the	15	
	Spark Shell as a Scala Shell, Number Analysis, Log Analysis.		
	Writing a Spark Application: Hello World in Spark, Compiling and		
	Running the Application, Monitoring the Application, Debugging the		
	Application.		
	Introducing Spark Streaming: Spark Streaming Is a Spark Add-on, High-		
	Level Architecture, Data Stream Sources, Receiver, Destinations,		
	Application Programming Interface (API), Streaming Context, Basic		
	Structure of a Spark Streaming Application, Discretized Stream (DStream),		

	Creating a Dstream, Processing a Data Stream, Output Operations, Window Operation.	
IV	Introduction: Kafka origin, Benefits, Use Cases, Messaging System.	15
	Brokers and Clusters.	
	Kafka CLI: Creating Kafka Topics, Sending data to Kafka, Kafka Console	
	Consumer, Kafka Consumer Group, Kafka Brokers, Topic Replication, and	
	Controller	
	Apache Kafka With Zookeeper: Start ZooKeeper, Single Node-Single	
	Broker Configuration, Start Producer to Send Messages, Start Consumer to	
	Receive Messages, Single Node-Multiple Brokers Configuration	
	Creating a Topic: Start Producer to Send Messages, Start Consumer to	
	Receive Messages	
	Kafka Real Time Example: Creating Twitter Producer, Application	
	Kafka monitoring, Kafka Connect	

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Spark : The Definitive Guide	Bill Chambers & Mataei Zaharia	O'Reilly Media, Inc.	1^{st}	2018
2	Big Data Analytics with Spark : A Practitioner's Guide to Using Spark for Large Scale Data Analysis	Mohammed Guller	Apress	1 nd	2015
3	Practical Big Data Analytics Hands-on Techniques to Implement Enterprise Analytics and Machine Learning Using Hadoop, Spark, NoSQL and R	Nataraj Dasgupta	Packt	Illustrated	2018
4	Big Data Analytics	Radha Shankarmani	Wiley	Second	2016
5	Kafka : The Definitive Guide	Neha Narkhede, Gwen Shapira , Todd Palino	O'Reilly	1st	2015

SIPDSCCP612 : Big Data Analytics Practical

M.Sc. (Data Science)	Semester – III	
Course Name: Big Data Analytics Practical	Course Code: SIPDSCCP612	
Credits	2	

1.	Install, configure and run Hadoop and HDFS
2.	Implement a program in Pig.
3.	Implement word count/ frequency program using MapReduce.
4.	Configure the Hive and implement the application in Hive.
5.	Implement Spark SQL.
6.	Implement machine learning with Spark or Hadoop.
7.	Implement Spark Streaming.
8.	Demonstrate Spark Shell commands.
9.	Implement Decision tree classification technique
10.	Implement an application that store big data in Hbase/ Mongodb/ Pig using Hadoop/R

SIPDSEL611 : Database Administration and Security

M.Sc. (Data Science)	Semester – III
Course Name: Database Administration and Security	Course Code: SIPDSEL611
Credits	3

Course Objective:

- Installing Oracle Software and creation of an Oracle Database using DBCA.
- Managing Database instances and ASM instances.
- Managing and controlling database network environment.
- Define and devise transaction management, concurrency control, crash recovery components and managing storage structures.
- Controlling user security and designing Database backup and recovery procedures.
- Take Decisions related to Database Maintenance.

Course Outcomes:

- **CO1:** Do Database installation and creation using DBCA and design Oracle Database Architecture.
- **CO2:** Manage Database instances and ASM instances.
- **CO3:** Setup Oracle Network environment.
- CO4: Manage database storage structures.
- **CO5:** Configure User security, Concurrency control, Database maintenance, Crash Recovery.

Unit	Contents	No. of
		Lectures
I	Oracle Overview and Architecture: An overview of logical and physical storage structures, Oracle memory structures, Oracle background processes, connecting to oracle instance, processing SQL command. Managing Oracle: starting up the oracle instance, managing sessions, shutting down the oracle instance, instances messages, and instance alerts. Control and Redo Log Files: Managing the control files, Maintaining and monitoring redo log files Managing tables, indexes and constraints: Storing data (create, alter, analyzing, querying table information), Managing indexes,	15
	Managing constraints	15
11	Managing Users and Security: Profiles, managing users, managing privileges, managing roles, querying role information. Introduction to Network Administration: Network design considerations, network responsibilities for the DBA, network configuration, Overview of oracle Net features, Oracle Net Stack Architecture Managing Data Concurrency: Locking mechanism, Oracle data concurrency management, Enque mechanism, Monitoring and resolving locking conflicts Managing Undo Data, DML and undo data generation, Monitor and administer undo data, Difference between undo data and redo data, Configuring undo retention,	15

IIIBackup and Recovery Overview: Database backup, restoration and recovery, Types of failure in oracle environment, defining a backup and recovery strategy, Testing the backup and recovery plan. Database Maintenance: Managing optimizer statistics, Preferences for Gathering Statistics, Managing the Automatic Workload Repository (AWR), Statistic Levels, Automatic Database Diagnostic Monitor (ADDM), Advisory framework, Automated Maintenance Tasks, Server-generated alerts, Setting alert thresholds Reacting to alerts Alert types and clearing Alerts15		Undo retention guarantee, Undo Advisor	
Information Security Overview: The Importance of Information Protection, The Evolution of Information Security, Justifying Security Investment, Security Methodology, How to Build a Security Program, The Impossible Job, Strategy and Tactics, Risk Analysis: Threat Definition, Types of Attacks, Risk Analysis. Secure Design Principles: The CIA Triad and Other Models, Defense Models, Zones of Trust, Best Practices for Network Defense. Web and Database security techniques: SQL Injection, Cross Site Scripting, Database privileges, Multilevel databases, Query modification, Social engineering and Phishing Attacks.	III	Backup and Recovery Overview : Database backup, restoration and recovery, Types of failure in oracle environment, defining a backup and recovery strategy, Testing the backup and recovery plan. Database Maintenance : Managing optimizer statistics, Preferences for Gathering Statistics, Managing the Automatic Workload Repository (AWR), Statistic Levels, Automatic Database Diagnostic Monitor (ADDM), Advisory framework, Automated Maintenance Tasks, Server-generated alerts, Setting alert thresholds, Reacting to alerts, Alert types and clearing Alerts Information Security Overview : The Importance of Information Protection, The Evolution of Information Security, Justifying Security Investment, Security Methodology, How to Build a Security Program, The Impossible Job, Strategy and Tactics, Risk Analysis: Threat Definition, Types of Attacks, Risk Analysis. Secure Design Principles: The CIA Triad and Other Models, Defense Models, Zones of Trust, Best Practices for Network Defense. Web and Database security techniques: SQL Injection, Cross Site Scripting, Database privileges, Multilevel databases, Query modification, Social engineering and Phishing Attacks.	15

Sr. No.	Title	Author/s	Publisher	Edition	Year
1.	Student Guides for Oracle Database Administration	Rajesh Bhatiya, Padmaja Potineni	Oracle	2 nd	2020
2.	Concurrency Control and Recovery in Database Systems	Deepak Khemani	ТМН	1 st	2018
3.	Databases and Transaction Processing	Lewis, Bernstein, Kifer, Addison Wesley		1 st	2001

SIPDSELP611 : Database Administration and Security Practical

M.Sc. (Data Science)	Semester – III
Course Name: Database Administration and Security Practical	Course Code: SIPDSELP611
Credits	1

1.	Creating Oracle Database
a.	Create a Database with the Database Configuration Assistant (DBCA)
b.	Create a Database design template with the DBCA
c.	Generate database creation scripts with the DBCA
2.	Managing the Oracle Instance
a.	Start and Stop the Oracle database and components.
b.	Use Enterprise Manager (EM)
3.	Administering Use Security
a.	Create and manage database user account
b.	Authentication users
c.	Grant and revoke privileges
d.	Create and manage roles
e.	Implement standard password security features
4.	Managing Schema Objects
4. a.	Managing Schema Objects Create and modify tables
4. a. b.	Managing Schema Objects Create and modify tables Define constraint
4. a. b. c.	Managing Schema Objects Create and modify tables Define constraint View the columns and contents of a table
4. a. b. c. 5.	Managing Schema Objects Create and modify tables Define constraint View the columns and contents of a table Managing undo Data
4. a. b. c. 5. a.	Managing Schema Objects Create and modify tables Define constraint View the columns and contents of a table Managing undo Data Monitor and administer undo
4. a. b. c. 5. a. b.	Managing Schema ObjectsCreate and modify tablesDefine constraintView the columns and contents of a tableManaging undo DataMonitor and administer undoConfigure undo retention
4. a. b. c. 5. a. b. 6.	Managing Schema ObjectsCreate and modify tablesDefine constraintView the columns and contents of a tableManaging undo DataMonitor and administer undoConfigure undo retentionConfigure the Oracle Network Environment
4. a. b. c. 5. a. b. 6. a.	Managing Schema ObjectsCreate and modify tablesDefine constraintView the columns and contents of a tableManaging undo DataMonitor and administer undoConfigure undo retentionConfigure the Oracle Network EnvironmentCreate additional listener
4. a. b. c. 5. a. b. 6. a. b.	Managing Schema ObjectsCreate and modify tablesDefine constraintView the columns and contents of a tableManaging undo DataMonitor and administer undoConfigure undo retentionConfigure the Oracle Network EnvironmentCreate additional listenerCreate Net Service aliases
4. a. b. c. 5. a. b. 6. a. b. c.	Managing Schema Objects Create and modify tables Define constraint View the columns and contents of a table Managing undo Data Monitor and administer undo Configure undo retention Configure the Oracle Network Environment Create additional listener Create Net Service aliases Configure connect-time failover
4. a. b. c. 5. a. b. 6. a. b. c. 7.	Managing Schema ObjectsCreate and modify tablesDefine constraintView the columns and contents of a tableManaging undo DataMonitor and administer undoConfigure undo retentionConfigure the Oracle Network EnvironmentCreate additional listenerCreate Net Service aliasesConfigure connect-time failoverPerforming Databases backups

SIPDSRP611 : Project

M.Sc. (Data Science)	Semester – III
Course Name: Project	Course Code: SIPDSRP611
Credits	6

Course Code	Course Type	Course Title	Credits
SIPDSCC621	Core Subject (Major)	Deep Learning	4
SIPDSCC622	Core Subject (Major)	Next Generation Technologies	4
SIPDSEL621	Core Subject (DSC)	Time Series and Forecasting	3
SIPDSCCP621	Core Subject Practical (Major)	Deep Learning – Practical	2
SIPDSCCP622	Core Subject Practical (Major)	Next Generation Technologies – Practical	2
SIPDSELP621	Core Subject Practical (DSC)	Time Series and Forecasting – Practical	1
SIPDSRP621	Research Project	Project /	6
		Total Credits	22

M.Sc. Part – II Semester – IV

SIPDSCC621 : Deep Learning

M.Sc. (Data Science)	Semester – IV
Course Name: Deep Learning	Course Code: SIPDSCC621
Credits	4

Course Objective:

- To know the importance of deep learning.
- To acquire knowledge of the basics of neural networks.
- To implement neural networks using computational tools for a variety of problems.
- To explore various deep learning algorithms.

Course Outcomes:

- **CO1:** Develop algorithms simulating human brain.
- **CO2:** Analyze ANN learning and memory-based learning.
- **CO3:** Explore the essentials of Deep Learning and Deep Network architectures.
- **CO4:** Define, train and use a Deep Neural Network for solving real world problems that require artificial Intelligence based solutions.
- **CO5:** Use deep learning methodology in real world application.

Unit	Contents	No. of
		Lectures
		1.5
l	Neural Networks: The Neuron – Expressing Linear Perceptrons as Neurons	15
	– Feed-Forward Neural Networks – Linear Neurons and their Limitations –	
	Sigmoid, Tanh and Relu Functions – Softmax Output Layers. Neural	
	Learning: Measuring Errors - Gradient Descent – Delta Rule and Learning	
	Rate – Backpropagation – Stochastic and Minibatch Gradient – Test Sets,	
	Validation Sets and Overfitting – Preventing Overfitting in Deep Neural	
	Networks – Other Optimization Algorithms: Adagrad, RMSProp,	
	Adadelta, Adam	1.5
11	Convolution Neural Networks: Neurons in Human Vision – Shortcomings	15
	of Feature Selection – Scaling Problem in Vanilla Deep Neural Networks –	
	Filters and Feature Maps – Description of Convolutional Layer –	
	Maxpooling – Convolution Network Architecture – Image Classification	
	Pre-Trained Models: Self-Supervised Pretraining, AlexNet, VGG, NiN,	
	GoogleNet, Residual Network (ResNet), DenseNet, Region-Based CNNs (R-	
	CNNs) – Transfer Learning - FSL	
III	Recurrent Neural Networks: Sequence-to-Sequence Modeling –	15
	Embedding - Recurrent Neural Networks - Bidirectional RNNs, Analyzing	
	Variable Length Inputs – Tackling seq2seq Problem – Beam Search and	
	Global Normalization – Recurrent Neural Networks (RNN)– Hidden	
	States – Perplexity – Character-level Language Models – Modern RNNs:	
	Gated Recurrent Units (GRU), Long Short Term Memory (LSTM),	
	Bidirectional Long Short Term Memory (BLSTM), Deep Recurrent Neural	
	Network, Bidirectional RNN. Attention Models and Transformers:	

	Attention Mechanism: Attention Cues, Attention Pooling, Scoring Functions, Self Attention and Positional Encoding; –Bidirectional Encoder Representations from Transformers (BERT) – Generative Pre-trained Transformers	
IV	Advanced Neural Networks: Generative Adversarial Networks – Generator, Discriminator, Training, GAN variants; Autoencoder: Architecture, Denoising and Sparcity; DALL-E, DALL-E 2 and IMAGEN	15

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	MIT Press		2016
2	Neural Networks and Deep Learning	Michael Nielsen	Determinat ion Press		2015
3	Deep Learning with Python	Francois Chollet	Manning Publications	First	2017
4	Dive into Deep Learning	Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola	Cambridge University Press		2024

SIPDSCCP621 : Deep Learning Practical

M.Sc. (Data Science)	Semester – IV
Course Name: Deep Learning Practical	Course Code: SIPDSCCP621
Credits	2

1.	Python Primer
	Revisiting Data Preprocessing
	Setting up Deep-Learning workstations
	Working with different data types and file formats
2.	Simple Classification Tasks
	Working with MNIST – IMDB Datasets
3.	Training a CNN from Scratch
	Using pre-trained CNNs
4.	Visualizing what CNNs are learning – Intermediate Activations, Convnet
	Filters, Heatmaps
5.	Exploring Multi-Input, Multi-output Models
	Hyper-parameter Tuning
6.	Language Modeling using RNN
	Practicing of Stacking Layers in Bidirectional RNNs
7.	Transfer Learning models for classification problems
	Exploring Hugging-face API
8.	Text Generation Using LSTM
9.	Image generation from Text using GAN
10.	Demonstrate video to text with LSTM model.

SIPDSCC622 : Next Generation Technologies

M.Sc. (Data Science)	Semester – IV
Course Name: Next Generation Technologies	Course Code: SIPDSCC622
Credits	4

Course Objective:

- To acquire knowledge of the basics of Microsoft Azure.
- To implement virtual machines in Azure.
- To acquire knowledge about web3 Technologies Blockchain.
- To acquire knowledge about the basics of Flask.
- To acquire knowledge about Docker and Kubernetes.

Course Outcomes:

- **CO1:** Configure and manage virtual machines in Azure.
- **CO2:** Understand blockchain technology and develop blockchain based solutions.
- **CO3:** Build application using Flask
- **CO4:** Understand the basic concepts of containerization and how Docker operates on various systems.
- **CO5:** Understand the basics and architecture of Kubernetes.

Unit	Contents	No. of	
		Lectures	
Ι	Getting started with Microsoft Azure: What is Azure? Overview of cloud	15	
	computing, Azure services. Azure Resource Manager: Why use Resource		
	Manager? The classic deployment model, Role based Access Control, The		
	Azure portal: Dashboard and hub. Creating and viewing resources: Azure		
	Virtual Machines: What is Azure Virtual Machines? Billing, Service level		
	agreement, Virtual machine models, Azure Resource Manager model,		
	Classic/Azure Service Management model		
	Virtual machine components: Virtual machine, Disks, Virtual Network,		
	Availability set. Create virtual machines: Create a virtual machine with the		
	Azure portal, Create a virtual machine with a template		
II	Connecting to a virtual machine: Remotely access a virtual machine,	15	
	Network connectivity Configuring and managing a virtual machine:		
	Disks, Fault domains and update domains, Image capture Scaling Azure		
	Virtual Machines: Resource Manager virtual machines, Classic virtual		
	machines Azure Storage: Storage accounts: General-purpose storage		
	accounts, Blob storage accounts. Storage services: Blob storage, File storage,		
	Table storage, Queue Storage, Redundancy		
III	Introduction to Web3 Technologies Blockchain: Growth of blockchain	15	
	technology, Distributed systems, the history of blockchain and Bitcoin,		
	Blockchain, Consensus, CAP theorem and blockchain, Decentralization		
	using blockchain, Methods of decentralization, Routes to decentralization,		
	Blockchain and full ecosystem decentralization, The consensus problem,		

	Analysis and design, Classification, Algorithms, Bitcoin: Overview, Cryptographic keys, Transactions, Blockchain Mining, Bitcoin network, Wallets, Bitcoin payments, Innovation in Bitcoin, Advanced protocols, Bitcoin investment, and buying and selling Bitcoin	
IV	 Introduction to Flask: Installation, Basic application structure, routing, variables, redirect and errors, Templates, cookies, session, webforms, Databases. Introduction to Docker: Introduction to Docker Architecture and Container Life Cycle, Understanding images and containers, Create and Implement docker images using Dockerfile, Container Lifecycle and working with containers. To Build, deploy and manage web or software application on Docker Engine, Publishing image on Docker Hub. Introduction to Kubernetes: Install and configure Kubernetes, Spin Up a Kubernetes Cluster, Check the Nodes of Your Kubernetes Cluster, Installing kubectl to manage cluster and deploy Your First Kubernetes Application 	15

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Fundamentals of Azure	Michael Collier, Robin Shahan	Microsoft Press	2^{nd}	2016
2	Mastering Flask Web Development	Daniel Gaspar, Jack Stouffer	Packt	2nd	
3	Mastering Bitcoin: Programming the Open Blockchain	Andreas M. Antonopoulos	O'Reilly	3 rd	2017
4	Kubernetes and Docker - An Enterprise Guide: Effectively containerize applications, integrate enterprise systems, and scale applications in your enterprise	Scott Surovich, Marc Boorshtein	Packt		2020

SIPDSCCP622 : Next Generation Technologies Practical

M.Sc. (Data Science)	Semester – IV
Course Name: Next Generation Technologies Practical	Course Code: SIPDSCCP622
Credits	2

1.	Introduction to Microsoft Azure:
a.	Creating Virtual Machines with Azure Portal
b.	Creating Virtual Machines with template
2.	Configuring and managing Virtual machine in Azure
3.	Scaling Azure virtual machine
4.	Introduction to Flask:
a.	Create Flask application
b.	Show the use of cookies and sessions
5.	Implement Docker commands
6.	Implement Kubernetes commands

SIPDSEL621 : Time Series and Forecasting

M.Sc. (Data Science)	Semester – IV
Course Name: Time Series and	Course Code: SIPDSEL621
Credits	3

Course Objective:

- Present time series in an informative way, both graphically and with summary statistics
- Model time series to analyses the underlying structure(s) in both the time and frequency domains.

Course Outcomes:

- **CO1:** Forecast the trend pattern exhibited by the given data by using various methods
- CO2: Run and interpret time series models and regression models for time series
- **CO3:** Use the Box-Jenkins approach to model and forecast time series data empirically.
- **CO4:** Analyze and estimate the cyclic components using special processes.

Unit	Contents	No. of Lectures
Ι	 Introduction To Trend : Introduction to times series data, application of time series from various fields, Components of a time series, Decomposition of time series. Trend: Estimation of trend by free hand curve method, method of semi averages, fitting a various mathematical curve, and growth curves. Trend And Seasonal Component: Method of moving averages. Detrending. Effect of elimination of trend on other components of the time series. Seasonal Component: Estimation of seasonal component by Method of simple averages, Ratio to Trend, Ratio to moving average and Link relatives. 	
II	Forecasting: Variate component method: Stationary Time series: Weak stationary, auto correlation function and correlogram of moving average. Forecasting: Exponential smoothing methods, Short-term forecasting methods: Brown's discounted regression, Box-Jenkins Method. Cyclic Component: Deseasonalization, Cyclic Component: Harmonic Analysis. Some Special Processes: Moving-average (MA) process and Autoregressive (AR) process of orders one and two, Estimation of the parameters of AR (1) and AR (2) – Yule-Walker equations.	15
III	Non-stationary time series: Non-stationary time series. Time series with non-stationary variance. Non-stationary mean. ARIMA (p,d,q) models. The use of Box-Jenkins methodology to determination of order of integration. The unit root problem: The unit root problem. Spurious trends and regressions. Unit root tests (Dickey-Fuller). ADF test and the choice of the number of lags. Other unit root tests. Unit root and structure changes: Non-stationary time series, TSP or DSP: methodology of research. Segmented trends and structure changes.	15

Regressive dynamic models: Regressive dynamic models. Autoregressive
models with distributed lags (ADL). Vector autoregression model and co-
integration: Time series co-integration. Co-integration regression. Testing
of co-integration. Vector autoregression and co-integration. Co-integration
and error correction model.

Sr. No.	Title	Author/s	Publisher	Edition	Year
1	Practical Time Series Analysis Prediction with Statistics and Machine Learning	Aileen Nielsen	O'Reilly Media	1 st	2019
2	The Analysis of Time Series: An Introduction with R	Chris Chatfield , Haipeng Xing	Chapman and Hall/CRC	7 th	2019
3	Time series analysis and its applications	Robert H. Shumway, David S. Stoffer	Springer New York		2000

SIPDSELP621 : Time Series and Forecasting Practical

M.Sc. (Data Science)	Semester – IV
Course Name: Time Series and Forecasting Practical	Course Code: SIPDSELP621
Credits	1

1.	Fitting and plotting of modified exponential curve			
2.	Fitting and plotting of Gompertz curve			
3.	Fitting and plotting of logistic curve			
4.	Fitting of trend by Moving Average Method			
5.	Measurement of Seasonal indices Ratio-to-Trend method			
6.	Measurement of Seasonal indices Ratio-to-Moving Average method			
7.	Measurement of seasonal indices Link Relative method			
8.	Calculation of variance of random component by variate difference method			
9.	Forecasting by exponential smoothing			
10.	Forecasting by short term forecasting methods			

SIPDSRP621 : Project

M.Sc. (Data Science)	Semester – IV
Course Name: Project	Course Code: SIPDSRP621
Credits	6